Turning Goals Into Reality

Propulsion Systems Contribution to the Future

Ronald E. York, Ph.D.

Rolls-Royce

Allison Advanced Development Company

12 June 2003 Williamsburg

Rolls-Royce is...Building the Future Now

New Defense Programs

- STOVL JSF
- F136 for JSF
- Eurofighter
- AH-66 Comanche
- V-22 Osprey
- RQ-4A Global Hawk
- Fire Scout
- C-130J
- A400M
- Super Lynx 300

Technology Programs

- IHPTET
- VAATE
- SHFE
- SATE
- Joint US/UK HCF
- LRSA
- NAI
- UEET

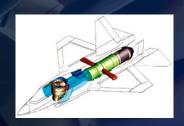
Emerging Opportunities

- UCAR
- CRW

Preparing for the Future: Near-term

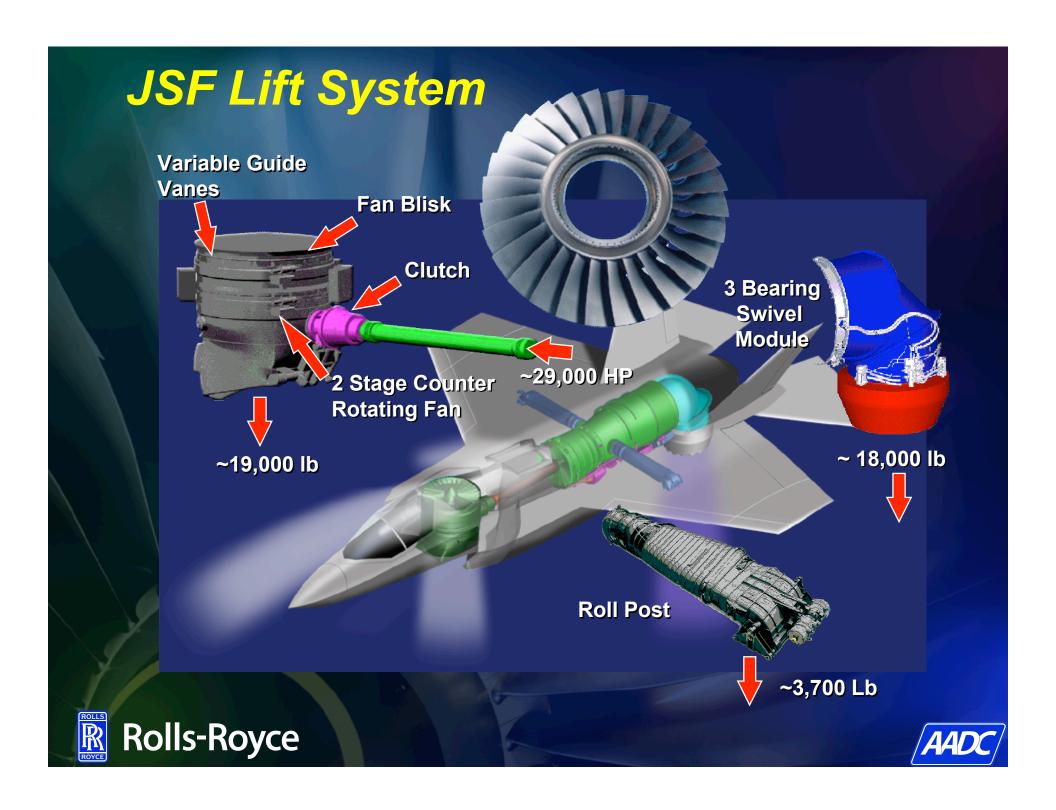
Platforms: Requirements: Challenges

V-22: convertible rotorcraft: *SFC,* systems integration


ERJ-145: low cost: supply chain, environment

Global Hawk: HALE: SFC, Re, HPX

JSF: stealth, STOVL, supercruise: SFC, lift system integration



Propulsion Enablers

- Innovative architectures
- Efficient engines
- Power transmissions
- US Government funded advanced technology programs:
 - DOD: IHPTET
 - NASA: AST & QAT
 - US/UK ASTOVL
- Commonality with commercial systems

Laying the Foundation for the Future: Medium-term (2010-2020)

Platforms: Requirements: Challenges

UCAV: range, stealth, endurance: *SFC, cost*

Mobility: high thrust, range: SFC, cost

Supersonic: speed, economics, environment: cycle, cost

Strike: speed, stealth, endurance: *cycle, cost*

Propulsion Enablers

- High OPR, temperature
- Variable cycles
 - Performance
 - Emissions
 - Noise
- More electric engines
 - High power extraction
 - Lubrication free
 - Magnetically suspended & controlled rotors
 - Prognostics & diagnostics
- Government funded advanced technology programs:
 - IHPTET, VAATE, QAT, UEET, NAI

VAATE Focus Areas

Versatile Core

Military/Civil Multi-Use, Maintenance Friendly

- Wide Flow / High Efficiency Components
- Long Life for Safety & Design Margin
- High Excess Horsepower Technology

Intelligent Engine

High Performing, Adaptive

- Adaptive Component Performance
- Integrated Propulsion & Power
- Real Time Life Tracking
- Proactive Health Management

DurabilityTurbine Engine Readiness

- Physics-Based Predictive Systems
- Integrated Inspection/Repair/Mfg & Materials Systems
- Robust, Damage Tolerance for Multi-Use Application
- Holistic Test Protocol & Accelerated Severity Testing

Electric Engine Concepts

Aircraft/engine interface simplified to fuel, electricity and thrust

Intelligent sensors Advanced engine health monitoring

All engine accessories electrically driven

Active magnetic bearings —

Internal starter motor/generator replaces conventional gearboxes Generator on fan shaft provides power to airframe under both normal and emergency conditions

Distributed controls

Air for pressurization/cabin conditioning supplied by dedicated electrical system

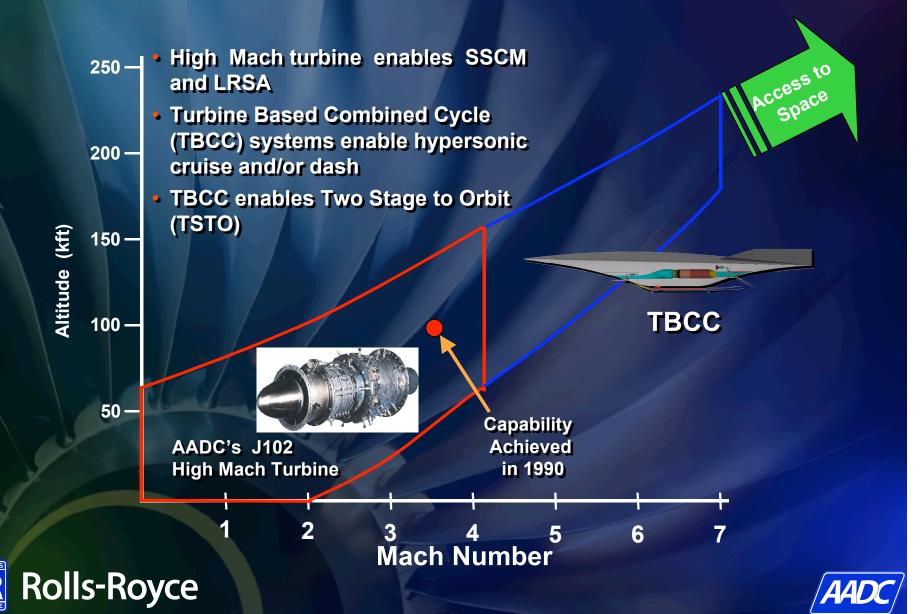
Anticipating the Future: Far-term

Platforms: Requirements: Challenges

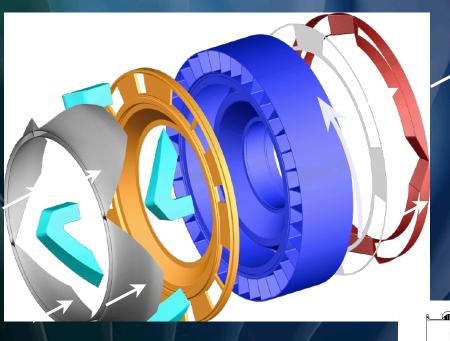
Extended Endurance
UAVs: continuous
surveillance &
communications:
closed cycles,
systems integration

Global Transport (trans-atmospheric): speed, cost: cycle, cost

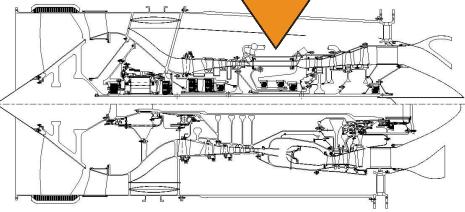
Access to Space: speed, cost: cycle, materials



Propulsion Enablers


- Novel cycles
 - TBCC
 - Pulse detonation
 - Fuel cells
- New fuels
 - Endothermic, hydrogen, nuclear, solar
- High temperatures and thermal integration
- Government funded advanced technology programs:
 - VAATE, NAI

High Mach Turbine Engine Technology


Constant Volume Combustor

Exploded View

Conventional

Propulsion is Enabling the Future!

- Propulsion innovation and platform advances are inextricably linked
- Technology enablers have typically been developed by government programs and are pulled by advanced military requirements
- The time scale of propulsion technology is typically more than 20 years from early component demonstrations to first flight
- New requirements drive certain technologies, but most step changes come from synergistic combination of several enabling technologies
- Many propulsion technologies, novel cycles and new architectures are being developed today that will enable major steps in future systems

Rolls-Royce Innovation: Delivering the Future

